What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study

نویسندگان

  • Zi-Xiang Li
  • Fa Wang
  • Hong Yao
  • Dung-Hai Lee
چکیده

Monolayer FeSe films grown on SrTiO3 (STO) substrate show superconducting gap-opening temperatures ([Formula: see text]) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed "replica bands" suggesting the importance of the interaction between FeSe electrons and STO phonons. These facts rejuvenated the quest for [Formula: see text] enhancement mechanisms in iron-based, especially iron-chalcogenide, superconductors. Here, we perform the first numerically-exact sign-problem-free quantum Monte Carlo simulations to iron-based superconductors. We (1) study the electronic pairing mechanism intrinsic to heavily electron doped FeSe films, and (2) examine the effects of electron-phonon interaction between FeSe and STO as well as nematic fluctuations on [Formula: see text]. Armed with these results, we return to the question "what makes the [Formula: see text] of monolayer FeSe on SrTiO3 so high?" in the conclusion and discussions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal

A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report...

متن کامل

Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer

The origin of enhanced superconductivity over 50 K in the recently discovered FeSe monolayer films grown on SrTiO3 (STO), as compared to 8 K in bulk FeSe, is intensely debated. As with the ferrochalcogenides AxFe2-ySe2 and potassium-doped FeSe, which also have a relatively high-superconducting critical temperature (Tc), the Fermi surface (FS) of the FeSe/STO monolayer films is free of hole-like...

متن کامل

Antiferromagnetic FeSe monolayer on SrTiO3: The charge doping and electric field effects

By growing monolayer FeSe on SrTiO3(001) surface, researchers obtain the highest superconducting transition-temperature for iron-based superconductor. Here, we study the antiferromagnetic (AFM) checkerboard monolayer FeSe adsorbed on SrTiO3(001) surface. We show that the system has a considerable charge transfer from SrTiO3(001) substrate to FeSe monolayer, and so has a self-constructed electri...

متن کامل

Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface

The exact mechanism responsible for the significant enhancement of the superconducting transition temperature (Tc) of monolayer iron selenide (FeSe) films on SrTiO3 (STO) over that of bulk FeSe is an open issue. We present the results of a coordinated study of electrical transport, low temperature electron energy-loss spectroscopy (EELS), and high-angle annular dark-field scanning transmission ...

متن کامل

Oxygen Vacancy Induced Flat Phonon Mode at FeSe /SrTiO3 interface

A high-frequency optical phonon mode of SrTiO3 (STO) was found to assist the high-temperature superconductivity observed recently at the interface between monolayer FeSe and STO substrate. However, the origin of this mode is not clear. Through first-principles calculations, we find that there is a novel polar phonon mode on the surface layers of the STO substrate, which does not exist in the ST...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2016